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ABSTRACT
Machine learning models based on satellite data have been actively
researched to serve as a proxy for the prediction of socio-economic
development indicators. Such models have however rarely been
tested for transferability over time, i.e. whether models learned on
data for a certain year are able to make accurate predictions on
data for another year. Using a dataset from the Indian census at two
time points, for the years 2001 and 2011, we evaluate the temporal
transferability of a simple machine learning model at sub-national
scales of districts and propose a generic method to improve its
performance. This method can be especially relevant when training
datasets are small to train a robust prediction model. Then, we go
further to build an aggregate development index at the district-
level, on the lines of the Human Development Index (HDI) and
demonstrate high accuracy in predicting the index based on satellite
data for different years. This can be used to build applications
to guide data-driven policy making at fine spatial and temporal
scales, without the need to conduct frequent expensive censuses
and surveys on the ground.
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1 INTRODUCTION
Socio-economic development of a society is the improvement in its
qualitative well-being and economic status. Different indicators like
GDP (Gross Domestic Product), literacy, employment, electricity
access, drinking water access, etc are used to measure the socio-
economic development of a region. In India, the national census [1]
covers a wide range of these development indicators at different
spatial granularity (country/ state/ district/ village). However, the
census is an expensive exercise involving an enumeration of every
household and is repeated only at a gap of every ten years. Subse-
quent releases of the compiled data take several more years. Hence,
there is a need to develop methods for more frequent data collection
to assess development at fine spatial and temporal scales, and then
use the insights for data-driven policy making. Satellite imagery
has been suggested as a viable data-source that can serve as a proxy
for census data to predict different socio-economic indicators at
national and sub-national scales [17, 20, 28, 29, 39, 44]. Recent ad-
vances in machine learning systems have facilitated this analysis
of processing high-resolution satellite data for the prediction of
socio-economic indicators.

Most machine learning models learn to classify the satellite im-
agery data into socio-economic indicators based on the ground-
truth available for a particular year. It is unclear though, whether
these models would transfer well over time, i.e. if models learned on
a particular year can make accurate predictions on the satellite data
from another year. Transferability of a well-known deep-learning
model [25] across countries was shown to be sensitive to hyper-
parameter tuning [20]. Factors such as extensive hyper-parameter
tuning are likely to surface in the transferability of models over
time also. To the best of our knowledge, temporal transferability
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Figure 1: Overall paper summary

of satellite-data based models has not been evaluated for socio-
economic indicators so far, especially with models trained on small
datasets. A likely reason may be the unavailability of village or
district level ground-truth data for different years, for which the
satellite data from the same source is available.

In our study, we specifically focus on the issue of evaluating
the temporal transferability of satellite data based machine learning
models for the prediction of socio-economic indicators. We curate
district-level ground-truth data from the Indian censuses of 2001
and 2011 to show that models learned on either year are not able
to accurately predict indicators on the other year. We then de-
velop a method to mitigate this transferability problem and make
robust predictions for socio-economic indicators across different
years. The predictions can be further used to monitor aggregate
development across a broad range of different social and economic
indicators, and we are able to visually show changes in the spatial
inequality of development in India between 2001, 2011, and the
current year of 2019.

Figure 1 summarizes the flow of the paper. Our work is divided
into four parts:

(1) We begin with the cross-sectional prediction of six socio-
economic indicators for each district by using a machine
learning model which takes the satellite imagery of that
district as an input. We do this for both the census years
2001 and 2011, and demonstrate a reasonable accuracy of
our model.

(2) We then test the performance of our model across years:
Using the model trained on data from 2001, we try to predict
the development indicators for 2011, and vice versa. Results
show that the model does not transfer well over time.

(3) We then present a novel method which mitigates this trans-
ferability problem to predict socio-economic indicators for
each district in 2011, using the model trained on data from

2001. This is achieved by predicting the indicators at every
alternate year between 2001 and 2011, and then aggregating
these results as an error correction technique. A further im-
provement is achieved by using some variables of the census
data from the base year of 2001 as an additional input to the
model.

(4) In the final segment, we apply this model to show how spatial
inequality in the development of India has changed between
the years 2001 and 2019.

We next present related work in section 2, followed by a de-
scription of our dataset in section 3. In section 4 we present our
model for cross-sectional prediction, and in section 5 we test the
transferability of this model over different years. Our method to
achieve temporal generalizability is described in section 6, and its
application to track aggregate development over the years is shown
in section 7. We finally conclude our study with discussions about
future work in section 8. Our work is relevant and timely in using
big-data techniques to aid policy makers in making data-driven
decisions for socio-economic development.

2 RELATEDWORK
Satellite data has been shown to have considerable potential in
serving as a proxy to assess socio-economic development at fine
spatio-temporal scales [11]. We describe related studies in this
area, and call attention to a pressing need for a comprehensive
evaluation of the transferability of various methods over time, as
also highlighted by other researchers [12, 39].

2.1 Predictions from nightlights
Light intensity measurements done by satellites during night hours,
called nightlights, have been shown to have a strong correlation
with GDP at the country level [9, 13, 22, 34]. This correlation has led
to important applications, such as attempts to assess the impact of
war and post-war recovery efforts in Syria [16], where any ground-
level censuses or surveys have not been conducted in recent years.
Concerns have, however, also been raised about an over-estimation
of GDP-fall, highlighting the need for stronger evaluations over
time. Efforts have also been made for estimation of GDP at sub-
national scales [10, 27, 30], but issues like the blooming effect where
nightlights diffuse over long distances in certain topographies [23],
and almost unobservant intensities in rural areas [4, 34], have raised
concerns about the use of nightlights at fine spatial granularity.
State-level GDP predictions have been attempted in India [30, 38],
but district-level GDP data is largely unavailable to make stronger
assessments.

2.2 Predictions from daytime satellite imagery
Given the problems with nightlights such as the blooming effect
and lack of useful observations for rural areas, the use of multi-
spectral daytime satellite imagery has seen considerable research
interest. It has been anticipated that indicators for drinking water
could be related to spectral features of surface-level water bod-
ies, indicators for asset ownership could be related to the density
of residential construction observable in the visible bands of day-
time satellite imagery, etc. Some national-level studies for poverty
mapping using daytime imagery have outperformed nightlights
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based models [33, 40]. At sub-national levels, supervised learning
techniques have been used to predict population density [24] and
poverty [31] at the village-level in India. CNN-based regression
models have also been built for other socio-economic indicators
like education, literacy, and health [39] using a large dataset of
2,18,000 images for training. Semi-supervised learning techniques
using generative adversarial networks [32] have been explored to
predict poverty in the absence of sufficient labeled training data,
but these models are hard to train. Some other applications have
studied the relationship between poverty and environmental data
[43], the ability to classify built-up and non-built-up areas [17],
and finer categories of land-use classification into industrial areas,
residential areas, cropland, and forests [21]. None of these works
have, however, been tested for prediction over time, a likely reason
being the unavailability of ground-truth data at different points in
time for which the satellite data is also available. Robinson et al.
[36] use a deep learning approach on a training dataset of 8 million
pixel values to predict the population in the US at a county-level.
Even though their model trained on one year is shown to work
across ten years, we cannot expect a similar result with any dataset,
especially with small datasets.

2.3 Combination of nightlights and daytime
satellite imagery

Awell-known transfer learning approach has trained deep-learning
models to use daytime imagery to predict nightlight intensities, and
then use the mined features to predict poverty indicators [25]. This
study reported reasonably good accuracy at a cross-sectional level
and indicated the need to evaluate the model across time as well.
Subsequent research [20] showed that the models did not transfer
well across different countries without explicit hyper-parameter
tuning. These models again have, however, not been tested for re-
liability over time. Other transfer-learning approaches which use
labeled datasets like ImageNet [25], and DeepSat [3] for pre-training
deep learning models would also work poorly with our dataset as
it is too small to fine-tune these prediction models.

In our work, we build a simple model using daytime multi-spectral
satellite data to predict six different socio-economic indicators at
the district level. Our key contribution is then to show that this
model, which performs well for a given year, does not transfer well
to predict indicators for a different year. We come up with a method
to address the transferability of our model; this method is generic
and can be applied to different prediction models. As part of future
work, we plan to evaluate the same method for other models as
well.

3 DATASET
3.1 Satellite data
We use the Landsat7 satellite system for daytime imagery since it is
available since 1999, which matches the years of 2001 and 2011 for
which we have the ground-truth census data. We downloaded the
freely available spectral data via the Google Earth Engine (GEE) plat-
form, at a 100m resolution, capturing the tier-1 top-of-atmosphere
reflectance [5, 42]. This data contains nine primary bands, as shown
in Table 1. These primary bands can also be used to derive several

Band Type Resolution
B1 Blue 30m
B2 Green 30m
B3 Red 30m
B4 Near Infrared 30m
B5 Shortwave Infrared 1 30m
B6_VCID_1 Low-gain Thermal Infrared 30m
B6_VCID_2 High-gain Thermal Infrared 30m
B7 Shortwave Infrared 2 30m
B8 Panchromatic 15m

(B4-B3)/(B4+B3) Normalized Difference
Vegetation Index (derived) 30m

(B2-B5)/(B2+B5)
Modified Normalized
Difference Water
Index (derived)

30m

(B5-B4)/(B5+B4) Normalized Difference
Built Index (derived) 30m

Table 1: Landsat 7 bands

other useful bands. Cloud cover in the images was removed through
a standard process in GEE, which filters out the images having high
cloud-cover values and then takes the median of the band values at
a pixel-level for the remaining images in a year [18].

3.2 Census of India: 2001 and 2011
The Government of India conducts a population census every ten
years. We use data from the 2001 and 2011 censuses, available from
the official census website [6]. The census reports the number of
households in each spatial unit (village, district, state), belonging
to 90 different categories such as the type of construction of the
house, the cooking fuel used, assets owned by the household, type
of employment, sector of employment, and many others. The 2001
data was available only at the district level; hence we do our analysis
at the district level only. Between 2001 and 2011, 47 districts were
split into smaller ones due to administrative changes, and for our
study we grouped them back into the original 593 districts that
existed as of 2001. We use the district-level shape-files for all 593
districts to demarcate the corresponding satellite images.

3.2.1 Discretization of socio-economic variables. For an indicator
variable like the type of fuel used for cooking, the census reports
multiple constituent parameters such as the number of households
that use firewood, kerosene, LPG (Liquefied Petroleum Gas), PNG
(Piped Natural Gas), bio-gas, etc. To avoid building separate predic-
tion models for each individual parameter, we need to compress
these multiple parameters into a single value for each indicator.
This is done in the following way: First, the parameters are grouped
into three broad types - Rudimentary, intermediate, and advanced
types. For example, firewood is considered as a rudimentary type
of fuel for cooking, kerosene and cow-dung as intermediate types,
and PNG and LPG as advanced types.

Next, a k-means clustering is performed for each indicator based
on the percentage of households in a district that is of type rudimen-
tary, intermediate, and advanced. As an example, Figure 2 shows
a box-plot for the distribution of districts across three levels (k =
3) in terms of their use of different types of fuel for cooking. This
clustering allows us to label each district as a level-1/2/3 district,
where level-1 districts predominantly use rudimentary types of fuel
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Variable Using/Access to Level-1 (in %) Level- 2 (in %) Level -3 (in %)

Asset Ownership

TV 15-30 30-50 60-85
Telephone 35-55 40-60 50-60
2 Wheeler 5-12 5-18 20-40
4 Wheeler 0-2 0-5 2-12

Bathroom
Facility (BF)

No Latrine facility 65-82 20-40 18-40
Pit Latrine 0-5 30-45 0-10
Piped Sewer/Septic Tank 15-28 25-40 50-70

Condition of
Household (CHH)

Dilapidated house 5-10 0-5 0-5
Livable house 55-65 40-50 25-35
Good house 30-40 45-55 65-75

Fuel for
Cooking (FC)

Firewood 60-80 0-12 10-25
Cow Dung/Kerosene 30-50 40-60 5-20
LPG/PNG/Bio gas 15-40 5-20 45-65

Main Source
of Light (MSL)

No source of light 0-5 0-5 0-5
Kerosene oil/Other oil 70-80 30-50 5-15
Electricity/Solar Light 20-30 50-70 85-95

Main Source
of Water (MSW)

Well/Spring/River 40-70 2-20 5-15
Hand Pump/Tube Well 2-25 55-80 10-28
Tap Water/Treated water 20-40 10-28 60-85

Table 2: Census variables: Range of % of households across
all districts using or with access to different amenities [19]

Figure 2: Fuel for cooking: District Box-plots for 3 levels [19]

for cooking, level-2 districts predominantly use intermediate types,
and level-3 districts largely use advanced types of fuel for cooking.
In this manner, we are able to map each district to levels 1/2/3 for
every indicator. Table 2 summarizes this grouping along with the
range of percentage value of households for different indicators
and districts at different levels. A detailed explanation of the dis-
cretization method and robustness for different values of k can be
found in [19].

We are thus able to frame our machine learning problem as a
classification task where we use the spectral data of a district to
predict it’s level for an indicator. A separate classifier is learned
for each indicator. Other than avoiding having to learn different
models for each parameter of an indicator, this method is also
useful for several additional reasons. First, as shown in the book
Factfulness by Hans Rosling [37], a similar 4-level coarse mapping
reflecting the different stages of development of a region, is easy for
people to interpret and helps them compare different regions with
one another. Second, it aggregates the constituent parameters to
a single category without assigning arbitrary weights to combine
together the various parameters for a variable. Third, it simplifies
the training of classification models. Finally, the census data can

have errors, and in such situations as explained by Ganguli et al.
[14], a classification problem can help in eliminating noise which
could otherwise get amplified if we were to build a regression model
for each variable or its parameters.

4 CROSS-SECTIONAL CLASSIFICATION
As discussed in the previous section, for each of the six socio-
economic indicators (Assets, BF, CHH, FC, MSW, and MSL), every
district is assigned a label of level-1/2/3, which indicates their level
of development for that indicator. Hence our prediction task can be
formulated as a multi-class classification problem for each indicator.
In this section, we first present the feature extraction technique
used to represent the spectral values for each district and then we
proceed towards a classification model which uses these feature
vectors to predict the district labels for the indicators. This cross-
sectional classification is conducted for the census years 2001 and
2011 independently to test the model’s performance for both the
years.

4.1 Feature extraction
We build a simple model at this stage, by using histogram-based
features for all the 12 (primary and derived) bands. We do this as
follows. First, a quantile binning method is used to determine the
bin-intervals for each band by taking the band-values for all pix-
els across all the districts. We determine these bin-intervals for a
different number of bins (experimenting with values of 5, 10, 15,
20, 25 and 30 bins). Next, for each district, we find the frequency
distribution of the band-values according to the bin-intervals com-
puted for the band. This frequency distribution is then normalized
with the count of the total number of pixels in the district. Thus,
for each district, we are able to obtain 12 vectors, each of size equal
to the number of bins used for that band. We experimented with
a different number of bins for each band and finally chose the
value of 10 which gave a high f1_score across all indicators when
tested with different machine learning models. It is also intuitive
not to set the bin-count too high, as it leads to a higher dimensional
representation which increases the model complexity [26].

We chose this feature extraction method because it is sensitive
to the tonal distribution of an image and is invariant to transfor-
mations like rotation and scaling. To demonstrate that it is able to
capture relevant differences between districts, we show an exam-
ple in Figure 3 of four districts, Moga and Balaghat which have a
high vegetation cover due to large forests, and Jaipur and Nagpur
which are highly urbanized districts with low vegetation cover. The
histogram vector of these districts for the Normalized Difference
Vegetation Index (NDVI) derived band clearly shows a difference
between the high-vegetation and low-vegetation districts. However,
this method does not capture any spatial features, and we leave it
to future work to build more sophisticated models.

4.2 Classification model
Having created the feature vectors for each district, we next eval-
uate various classifiers for the multi-class classification problem.
We experimented with different families of ML models including
kernel-based (support vector machines), tree-based (decision trees),
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Indicator
Census year 2001 Census year 2011

[25] Baseline Majority Baseline SVC RF XGBoost model [25] Baseline Majority Baseline SVC RF XGBoost model
Weighted F1 Weighted F1 Weighted F1 Weighted F1 Weighted F1 Accuracy Weighted F1 Weighted F1 Weighted F1 Weighted F1 Weighted F1 Accuracy

ASSETS 0.41 0.69 0.73 0.73 0.79 0.79 0.36 0.20 0.59 0.64 0.67 0.67
BF 0.42 0.56 0.71 0.76 0.79 0.77 0.39 0.41 0.56 0.67 0.69 0.69
CHH 0.38 0.31 0.52 0.58 0.62 0.61 0.36 0.25 0.55 0.59 0.64 0.63
FC 0.38 0.44 0.65 0.70 0.74 0.74 0.42 0.41 0.61 0.69 0.76 0.76
MSL 0.35 0.17 0.59 0.60 0.64 0.63 0.37 0.38 0.63 0.64 0.72 0.70
MSW 0.38 0.21 0.62 0.63 0.66 0.65 0.37 0.28 0.69 0.71 0.76 0.76

Table 3: District-level weighted F1 scores and accuracy for the year 2001 and 2011. The weighted F1 scores of the XGBoost
model are compared against the scores of RF (Random Forest), SVC (Support Vector Classifier), Majority Baseline, and Jean et
al. [25] baseline which refers to the model created using training data with shuffled labels

Figure 3: Histogram comparison for the NDVI band for four
district examples

neural network (multi-layer perceptron) and ensemble models (ran-
dom forest, XGBoost, AdaBoost). Among these models, XGBoost
[8] gave the best results for all the socio-economic indicators, and
we use this model for further analysis. Our results are in line with
the observations made by [15] regarding the higher robustness
of ensemble techniques to noise and small training datasets (593
districts in our case). Although CNN-based methods are known to
give better results with images, we do not use them here because
of our small dataset at the district level. In the future, we plan to
improve the results by using more sophisticated machine-learning
models over a bigger training dataset of village-level images.
While using XGBoost, we use the SMOTE (Synthetic Minority Over-
sampling Technique) method [7] to address class imbalance issues.
SMOTE creates new minority class instances (synthetic) between
existing (real) minority instances. All the hyper-parameters of the
XGBoost model are set using the RandomSearch method followed
by GridSearch in python’s scikit-learn module. We use the 5-fold
cross-validation technique for evaluating the performance of the
model, and the resulting accuracies and the weighted F1-scores are
summarized in Table 3 for the years 2001 and 2011.

4.3 Results and analysis
As can be seen from Table 3, even at a coarse resolution of spectral
values at 100m, our simple model is able to attain a fairly reasonable
performance in classifying several socio-economic indicators for
both the years 2001 and 2011. The performance is different for
different indicators and this trend persists even when using other
classifiers like SVM, decision tree, random forest, and AdaBoost.

To demonstrate the statistical significance of our results, we
use an approach to generate a comparison baseline similar to the

one used by Jean et al. [25]. We arbitrarily shuffle the labels of the
training data and then perform the classification. This classification
task using the shuffled training dataset is done for both the years
2001 and 2011. The results are summarized in Table 3. We observe
that the F1-scores for each indicator on the shuffled training data
are much lesser, showing that the classification accuracy of our
model is not coincidental. Further, we compare our results against a
majority baselinewhere, for each indicator, every district is assigned
the most frequently occurring label as its predicted label for that
indicator. As shown in Table 3, the performance of XGBoost model
surpasses the baseline results for each indicator.

5 TEMPORAL TRANSFERABILITY ANALYSIS
Unlike with most related work where ground-truth data was not
available at multiple points in time, we are in a position to evaluate
whether models learned on some year are able to perform well on
data from another year. This is an essential requirement if satellite
data models are to serve as an effective proxy for census data. We
therefore use the XGBoost models described in the previous section
learned on the data from 2001 to predict the labels in 2011, and
then vice versa to learn the models on data from 2011 to predict
the labels in 2001.

5.1 Results and analysis
Figure 4 shows a comparison between the performance of models
trained on data from 2001 to classify the districts in 2011. Weighted
F1-scores are used as the performance metric. Similarly Figure 5 in-
dicates the performance of the prediction model trained on spectral
data of 2011, to predict for 2001.

Figure 4: Weighted F1-scores of the models trained on 2001
to predict labels for 2011
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Figure 5: Weighted F1-scores of the models trained on 2011
to predict labels for 2001

We observe that the scores consistently dip for all the indicators,
indicating that our model does not translate in a straightforward
manner across ten years. Some of the possible explanations can be:

• 593 district samples are too small a dataset to train a robust
model that is scalable across time. A small collection of im-
ages can capture only a limited set of tonal distributions and
hence the model potentially under-performs when tested
over a gap of ten years, during which districts could have
dramatically changed in their profile.

• Data quality of a satellite can degrade over the years, and in
fact a failure of the Scan Line Corrector in Landsat7 since
the year 2003 has been documented to cause some data gaps.
The median-based filtering is believed to address this issue
to a significant extent [41].

• Over-sensitivity of the models to values of various hyper-
parameters can also affect its transferability.

In light of the poor transferability evidence, the next section
proposes a method to mitigate some of the above mentioned short-
comings to make our model perform better over different years.

6 IMPROVING TEMPORAL
TRANSFERABILITY

Figure 9 shows the districts in darker shades of red on which the
two-step classification works incorrectly when going from the base
year of 2001 to the target year of 2011. We observe that only 1.34%
of the districts have three or more indicators predicted incorrectly,
29.67% have two indicators predicted incorrectly, and 63.4% of the
d A small training dataset and potential errors in the satellite data
can act as barriers to the temporal transferability of prediction
models. To overcome some of these issues, we propose an error
correction/smoothing method to improve the model transferability
over different years. This method applies the model to predict labels
for several intermediate years between the base year (whose ground
truth is available) and the target year (whose labels are finally to be
predicted), and uses these as features for a second classifier to make
the final prediction. We call this second classifier the forward classi-
fier. This improved two-step classification is further complemented
by including some census variables of the base year as features in
the forward classifier, which are likely to affect the socio-economic

Figure 6: Forward classifier: Basic (left) and improved (right)
feature extraction. Here, Lp represents the predicted label of
an indicator and Cv stands for the true label of the variable
from the census

change that would be taking place in a district. We next describe
this methodology in more detail.

6.1 Feature extraction
Since Landsat7 data is annually available since 1999, we use the
2001 classification model to predict the indicator labels for the alter-
nate intermediate years between 2001 and 2011. Even if not highly
accurate for a specific intermediate year, our hope is that using all
these predicted labels together can act as an error correction or
smoothing mechanism to predict the eventual label for the target
year. Such a method may be able to handle sporadic noise due to
cloud-cover or other artifacts of satellite-based errors that might
hamper the prediction for a specific year but could get neutralized
when given values for several years. Labels are predicted for every
two years between 2001 and 2011 (2003, 2005, 2007, 2009, 2011), and
used as an input feature vector to train the forward classifier, as
explained in the left sub-part of Figure 6.

Goswami et al. [19] discovered several relationships between
various census variables. In particular they found that variables
related to discretionary spending by households, like assets and
bathroom facilities, were related with the level of literacy (LIT)
and formal employment (FEMP) in a district. Districts with higher
literacy and higher formal employment saw a more rapid change in
most of the discretionary variables over the years. They also found
that districts at intermediate levels of development improved faster
than districts at lower levels of development. We therefore use this
domain knowledge to include additional variables as features for
change classification, and evaluate its performance with variables
from 2001 for the literacy rate, formal employment, and the current
status of an indicator. The right sub-part of Figure 6 shows this
enhanced feature vector.

6.2 Classification model
We use an XGBoost classifier as before to evaluate the two models
for forward classification, using only the predicted labels for the
intermediate years, and also including features for the current status
of the indicator, the literacy rate and the formal employment in
the base year. The hyper-parameters of the model are set using
the RandomSearch method followed by GridSearch in python’s
scikit-learn module, and the class imbalance of the training data is
handled using SMOTE. The performance is evaluated using 5-fold
cross-validation.

6.3 Results and analysis
Weighted F1-scores of the improved two-step classification method
to predict the district levels for 2011 are shown in Figure 7. We
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witness a significant increase in the performance of the improved
two-step method over the original direct application of the 2001
model on 2011 data. There in an average increase of 22.8% in the
performance between these methods. We also test the backward
compatibility of the improved two-step classification method by
keeping the year 2011 as the base year and the year 2001 as the
target year to build a backward classifier. These results are shown in
Figure 8, and a similar pattern of improved performance is observed
in this case as well with a 21.5% rise in the weighted F1-scores. The
increase in performance by including census variables highlights
the importance of domain knowledge in machine learning tasks.

Figure 7: Forward classification: Performance of the im-
proved model trained on the year 2001 to predict for 2011.
Weighted F1-scores are used as the performancemetric. Fea-
tures (2003..2011) indicate the predicted labels for interme-
diate years, LIT and EMP denotes literacy and formal em-
ployment respectively, and CurrLabel denotes the status of
an indicator in 2001

Figure 8: Backward classification: Performance of the im-
proved model trained on the year 2011 to predict for 2001.
Weighted F1-scores are used as the performancemetric. Fea-
tures (2009..2001) indicate the predicted labels for interme-
diate years, LIT and FEMP denotes literacy and formal em-
ployment respectively, and CurrLabel denotes the status of
an indicator in 2001

Figure 9 shows the districts in darker shades of red on which the
two-step classification works incorrectly when going from the base

year of 2001 to the target year of 2011. We observe that only 1.34%
of the districts have three or more indicators predicted incorrectly,
29.67% have two indicators predicted incorrectly, and 63.4% of the
districts are correctly classified for each and every indicator for
2011. This encourages us to further build an aggregate assessment
of the development of a district as a single index which is simply
the sum of that district labels over all the indicators.

7 MONITORING AGGREGATE DISTRICT
DEVELOPMENT OVER TIME

The HDI (Human Development Index) is a method to build an
aggregate index for development by giving equal weightage to
indicators for economic development (per capita GDP), education
(literacy rate), and health (life expectancy) [35]. We similarly build
an aggregate development index (ADI) as the sum of the levels
of all the indicators for a district. The value of this index ranges
from 6 (all six indicators at the lowest level 1) to 18 (all six indicators
at the highest level 3) for every district. Having observed a good
performance of our improved two-step classification, we now try to
predict the ADI for every district. On comparing the values of ADI
for 2011 predicted by the forward classifier with the actual values
computed from the census data, we get a normalized RMSE (root
mean square error) value of 0.0413 across the districts. Similarly, a
normalized RMSE value of 0.0352 is achieved using the predictions
from the backward classifier for 2001.

Figure 9: Count of mis-classified indicators in 2011: Dis-
tricts with fewer indicators predicted correctly are shown
in darker shades of red.
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Figure 10: Aggregate district development in 2001 (as per census), 2011 (as per census), and 2019 (as per our predictions made
from satellite data)

7.1 Visualizing district development in India
Given the low RMSE values for the aggregate development index,
we apply the same method to predict the index for the current year
of 2019. We learn a new model based on the ground-truth data
for 2011, and we then use it to predict labels for the intermediate
years of 2013..2019. These labels are fed into the forward change
classifier (trained on the predicted labels between 2001..2011) to
make the final predictions of various indicators for 2019, which are
then aggregated to build the index. Note that we use 2011 as the
year to learn the cross-sectional model, but the change classifier
needs an input over ten years from 2009 to 2019. We therefore need
to make an assumption that the forward change classifier is robust
to the choice of year used for the cross-sectional model. We believe
that this is reasonable given that most of the indicators we are
studying are typically slow-moving indicators that may not have
changed substantially between two years.

Figure 10 visualizes the aggregate development of districts over
the period of almost two decades, for the years 2001, 2011, and 2019.
Districts with an aggregate development index between 6 to 10
are coloured red, between 11 to 14 are coloured yellow, and more
than 14 are coloured green. Between 2001 and 2011, we observe
that states from the eastern part of India (such as Orissa, Bihar,
Jharkhand, and West Bengal), large parts of north and central In-
dia (Uttar Pradesh and Madhya Pradesh), and the north-eastern
districts, show little change in development. These states indeed
have been the poorest states of the country. On the other hand,
states like Gujarat, Maharashtra, Tamil Nadu, and Andhra Pradesh,
saw many districts improve substantially during this time. These
observations tally with potential explanatory factors such as the de-
gree of industrialization in these states: Industrialized districts are
known to see more rapid growth as compared to non-industrialized
and predominantly agricultural districts [19].

Between 2011 to 2019, based on the predicted values for 2019,
there is an indication of more widespread growth in some of the
poorest states like West Bengal and Madhya Pradesh. However,

states like Jharkhand, Bihar, and Orissa, and large parts of Uttar
Pradesh, have not progressed substantially even now. These find-
ings seem to tally with some of the latest data from the Niti Aayog
based on state level surveys [2]. These observations illustrate the
kind of applications that can be developed based on the use of satel-
lite images to predict socio-economic indicators at the district-level.

8 DISCUSSION AND CONCLUSIONS
We presented an analysis of the potential to use satellite data for
the prediction of socio-economic indicators over time, at the spatial
scales of districts. We found that while our simple classification
model performed robustly in a cross-sectional analysis, the model
was unable to satisfactorily predict indicators for a different year
than what was used for its training. This problem in transferability
could arise either because of the small size of the training dataset
that could capture limited variations, or could possibly be due to
some year-specific effects such as clouds, rainfall, or satellite-based
artifacts like changes in sensor calibrations in specific years. It is
probably for this reason that the use of data points for multiple
consecutive years is able to perform better in making predictions
over time. This method is generic and can be applied to improve
the temporal transferability of other kinds of prediction models as
well. We are also able to achieve a good accuracy in predicting over
ten years an aggregate development index calculated as the sum
of values of multiple socio-economic indicators. This application
can be useful to identify anomalous districts that should be inves-
tigated further, such as outliers that progressed rapidly or did not
progress at all, over many years. As part of future work, we plan to
analyze mass media and other datasets about these outlier districts
in an attempt to explain their behavior. We also plan to build more
sophisticated machine learning models and try to make predictions
at village-level over time.
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